Point counting on hyperelliptic curves of
genus 3 and higher in large characteristic

Simon Abelard, Pierrick Gaudry, Pierre-Jean Spaenlehauer

CARAMBA — LORIA, NANCY
CNRS, UNIVERSITE DE LORRAINE, INRIA

ECC 2018 — Osaka

1/41

Plan

Introduction, background
Schoof's algorithm

Tools for polynomial systems
New complexity for large genus

The case of genus 3 with real multiplication

2/41

Point counting

Let C be a curve of genus g over a finite field F.
The number N;¢ of [Fgi-rational points of C is finite.

The Zeta function collects all of them into an analytic object:

Z(C,T)=exp (Z /\/,-7ch_") .

i>1

Weil's theorem:

Pc(T)

D= ana-qmy

where Po(T) = q?6 T8 + - - - is with integer coefficients.

Our goal: compute Pc(T) (hence, Z(C, T) and all of the N;¢).

3/41

Algorithmic Holy Grail

Size of the input: O(glogq)

Holy Grail of point counting: find an algorithm that compute Z
© in polynomial time in g and log g;
@ for a class of curves as large as possible;
© ...and maybe in a deterministic way;
© ...and maybe for other algebraic varieties;

© ...and maybe also in practice.

4/41

A very brief history of point counting

1985: Schoof’s algorithm, polynomial-time, deterministic for
elliptic curves;

1990: Pila, polynomial-time for fixed genus, deterministic for
Abelian varieties (and therefore Jacobian of curves),

1999-20xx: Satoh, Kedlaya, Lauder-Wan, polynomial-time,
deterministic in fixed characteristic, with p-adic algorithms.
2014: Harvey, average polynomial-time when dealing with
many C that are reductions of the same curve over Q.

5/41

Recent research topics

extend p-adic techniques to more varieties (Harvey, Tuitman);

extend average polynomial-time to more varieties (Harvey,
Kedlaya, Sutherland, Massierer);

explicit isogenies and modular equations for genus 2
(Couveignes, Ezome, Milio, Martindale);

not so much on ¢-adic methods

6/41

Our plan for today

Let's concentrate on hyperelliptic curves in large characteristic.

Known complexities for arbitrary genus:
© Pila (1990): O(log q)?, where A(g) is not explicit;

© Huang, with lerardi (1998) and Adleman (2001): (log q)é(gz).

’First goal: make the exponent linear in g.‘

Known complexities for small genus:
© Elliptic curves: Schoof (1985), and Schoof-Elkies-Atkin
(199x): O((log 9)*);

© Genus 2: G.-Harley (2000) and G.-Schost (2012): O((log q)2);

© Genus 2 with RM: G.-Kohel-Smith (2011): O((log q)®);
© Genus 3: 7?7 O((log g)'**) mentioned here and there.

Second goal: give the exponent for genus 3 with and without RM. ‘

7/41

Hyperelliptic curves

Def. A curve is hyperelliptic if it admits an equation

with f a monic, squarefree polynomial.

Remarks:
© In characteristic 2, need to modify the equation;

© We assume deg f is odd (imaginary model); enough for
theoretical complexity (maybe not in practice). Then
deg f = 2g + 1 where g is called the genus;

© Have to think about the desingularized, projective model;
© There is only one point at infinity after desingularization: P;

© The Jacobian is an associated Abelian variety of dimension g.

8/41

Divisors

Let Dive be the free group of points of C:
Dive = {D = Z npP | for almost all P, np = 0}.
PeC(Fq)
The degree of D € Dive is deg D =)" np.

The divisor of a non-zero function ¢ € Fy(C) is

div(p z valp(p

where valp(y) is the valuation of ¢ at P.
The set of such divisors is the group of principal divisors:

Pring = {div(gp) | ¢ € E(C)*}

Thm. A principal divisor has degree 0.

9/41

Divisor class group and Jacobian

Divisor class group:

Pic2 = {Degree-0 divisors} /{Principal divisors}.

This can be given the geometrical structure of a principally
polarized Abelian variety: the Jacobian of C, and we denote it
Jacc.

Rem. A purely geometric definition of Jacc can be done via an
embedding in a projective space with theta functions.

10/41

Mumford representation

By Riemann-Roch theorem, each class has a unique representative
of the form

D=P;+ -+ P, —rPy,with r <g,

and no two P;'s are symmetric w.r.t the x-axis.
Thm. (Mumford representation) Any divisor class can be
uniquely represented by a pair (u(X), v(X)), where

© v is monic, of degree at most g;

© degv < degu;

® u divides v2 — f;

If D is as above, then u(X) = [[(X — xp,) and v(x;) = y;.

Cantor’s algorithm allows to compute efficiently in the Jacobian
when elements are represented like this.

11/41

Weil's theorem

Pc(T)
(1-T)1—qT)’

Z(C,T) =

Weil’s theorem implies:
© Po(T)=T11%2,(1—uT), where |uj| = g*/2;
© if Po(T)=ao+ 31T+---ang2g, then we have
ag—i = g8 'a;
® the coeffs are bounded by (2gg)qg (could be more precise).
Link with the Frobenius endomorphism:

Let m be the x — x9 map extended to a map from C to itself and
then linearly to Jace to itself. It can be proven that

Pe(m) =0,
where Pg is Pc with reversed-ordered coefficients.

We write x(T) = P¢(T) for this characteristic polynomial of
Frobenius.

12/41

Plan

Introduction, background
Schoof’s algorithm

Tools for polynomial systems
New complexity for large genus

The case of genus 3 with real multiplication

13/41

Torsion

Let A be an Abelian variety over Fy (A will be Jacc).
The /-torsion subgroup is

All) ={P € A(Fy) | £- P =0}.
Thm. For a prime ¢ coprime to g, the group structure of A[/] is
All] = (Z./07.)%.

The set A[¢] \ {0} is an algebraic variety of dimension 0, and we
can consider its ideal.

Def. The ideal corresponding to the non-zero ¢-torsion points is
denoted by /.

Rem. /I, depends on the set of coordinates chosen to represent
A. This could be projective coordinates, or a local affine patch.

14/41

Frobenius action on A[/]

Matrix representation of Frobenius.

The Frobenius endomorphism 7 maps elements of A[{] to A[/].
Viewing A[{] as an [Fy-vector space of dimension 2g, 7 acts
linearly on this vector space: it can be represented as a matrix,
whose characteristic polynomial is x¢(7) mod £.

Thm. The characteristic polynomial of 7 on A[{] is the
reduction mod / of the global characteristic polynomial of .

If I; is an ideal in a coordinate ring F,[X], the generic ¢-torsion
element is represented by the algebra By = Fo[X]/l,.

Assuming computing in By is efficient, we can compute y¢(7)
mod /.

Note: “efficient” is not so simple to define, here.

15/41

Combining modular information

Main point counting algorithm: (3 la Schoof)

1. While the product of ¢'s already handled is < (2§)qg:

1.1 Pick the next small prime £ coprime to g;
1.2 Compute the ¢-torsion ideal /y;

1.3 Find an efficient representation of /y;

1.4 Compute xc(w) mod ¢;

2. Reconstruct xc(7) by CRT.

Rem. The number and the size of the ¢'s is polynomial in g log g.
But the ideal /; is of degree ¢?8, which is exponential in g.

Rem. The step 1.3 does not exist in the elliptic case, where we
use the division polynomial v, to represent /.
But 1.3 is the most important step for higher genus.

16/41

Coordinate systems for /y

An efficient representation starts with a coordinate system.

Theta functions:

© Need many coordinates, at least 25;

© But nice projective embedding: less non-genericity to handle.

Mumford coordinates:
© Optimal number of coordinates O(g);

© But local affine coordinates: many non-generic cases if an
intermediate point is not in this affine patch.

17/41

Plan

Introduction, background
Schoof's algorithm

Tools for polynomial systems
New complexity for large genus

The case of genus 3 with real multiplication

18/41

What do we want?

Coordinates of a generic ¢-torsion element will be in
By = Fq[X]/lr,

where X is the set of 2g Mumford coordinates.

Applying Frobenius = raising to the g-th power in By.

This means being able to work “modulo the ideal”.

This is essentially the definition of a Grobner basis.

Rem. We are interested both in proven complexity bounds and
practical efficiency.

19/41

Grobner bases — F4 / F5 algorithm

What is it?
© Algorithm that computes a Grébner basis of the ideal, for any
monomial order; (Faugére)

© Usually done in two steps: GB for grevlex and then change
of ordering for lex;

© Heavily relies on linear algebra.
Good points, bad points.
X Bad complexity bounds if nothing is known.

X Good complexity bounds require hard-to-prove properties of
the input system.

X Really compute the GB: need to take care about parasite
components (saturation).

v Robust to many situations.

v Some public and efficient implementations.

20/41

Resultants (univariate)

What is it ?
© Algorithm to compute a combination of two input
polynomials, with one less variable;
© Produces an element in the ideal: need to repeat to produce a
generating set;
© Polynomial arithmetic;

© There exist multivariate resultants, but mostly of theoretical
interest.

Good points, bad points.
X Not always easy to guarantee that we have a complete set of
generators;
X Really bad complexities when there are many variables;
v Complexity bound do not assume too much on the input
system;
v Some public and efficient implementations.

21/41

Geometric resolution

What is it ?
@ Algorithm to put the system in triangular form, close to GB
for lex order (Giusti, Lecerf, Salvy, Cafure, Matera, ...);
© Incremental process based on Newton lifting;

© Relies on (univariate) polynomial arithmetic and (Jacobian)
matrix inversion.

Good points, bad points.
X Intrinsically probabilistic (Monte Carlo);
X Only prototype implementations available;
X Requires some nice properties of the input system;
v Said properties easier to prove than for GB;
v Good complexity bounds.

22/41

XL

What is it ?
© Algorithm that compute a solution in a given field of
definition (Courtois, Klimov, Patarin, Shamir, ...)

© Same general idea as F4 (Lazard’s algorithm using Macaulay
matrices);

© Heavily relies on linear algebra.
Good points, bad points.

X Efficient only for solution with coordinates in a small finite
field;

X Complexity bounds require hard-to-prove properties of the
input system;

v Some public and efficient implementations (for basic XL);

v" Sometimes heuristically more efficient than F4.

23/41

Summary of the situation for /,

The following is specific to our case.
Multi-homogeneity is an important property of our systems (see
below).

Applicable | Applicable Can use
in theory | in practice | multi-homog.

F4 ? v v
Resultants v v X
Geom. resol. v ? v
XL) 4) 4 ?

Rem. For your own problem, you'll have to write your own table.

24 /41

Plan

Introduction, background
Schoof's algorithm

Tools for polynomial systems
New complexity for large genus

The case of genus 3 with real multiplication

25 /41

Equations for the torsion (1)

Take a generic divisor:

g

D=> (Pi— Px),

i=1
where P; = (x;,y;) and write {D = 0.

For any i, £(P; — P) is equivalent to a reduced divisor in
Mumford representation:

UP;i — Pxo) = (ui(X), vi(X)),

where u; and v; are polynomials with coeffs that depends on x;
and y;. They are exactly Cantor’s division polynomials:

X,'—X X,'—X
u(X)=0 | —=— |, vilX) =g/ | —— | .
00 =0 (%) w0 =<0 (%)

26/41

Equations for the torsion (2)

¢D =0 <= (u1(X), vi(X)) + - - + (ug(X), vi(X)) = 0.
Applying g — 1 times the group law: difficult to control the
degrees.

Cantor sketched the following approach:
Consider the function

e(X,Y) = P(X) + YQ(X)
and dive = (u(X), v (X)) + - + {ug(X), a (X)).
Degrees of P and Q must be ~ g2/2 (parity of g — ¢ plays a role).

Set g2 indeterminates for the coefficients of P and Q. We have a
system of equations
x;

P(X) +es ('4y2X> Q(X) = 0 mod 4, (Xi4y2X> .

i

27/41

Multi-homogeneity

This strategy looks bogus, because we have increased the number
of variables from O(g) to O(g?), and the degrees O(¢?) of the
equations did not decrease to compensate for it.

Def. A multi-homogeneous polynomial system is a set of
equations f1(X,Y) =0,...,f(X,Y) =0, in two blocks of
variables, where for each equation, the degree in X is < dx and
the degree in Y is < dy.

Key quantity for complexity analysis:
d> d,”,

where n, and n, are the number of variables in each block.

We have added g? variables, but they occur in degree 1, so
this won't hurt the multi-homogeneous complexity.

28/41

Geometric resolution and multi-homogeneity

With the geometric resolution algorithms in the end, the
complexity of solving the system should be polynomial in

dpx dy” = Og((°%).

But for that, we need the input system to be

© 0-dimensional (need to clean-up any higher dimensional
parasite component);

@ radical (no multiple roots);

© a regular sequence (each equation cuts cleanly the previous
ones).

Rem. The first system you write to describe an algebraic situation is
never like this.

29/41

Technicalities to get a proven complexity

0-dimensional: careful when writing equations; any denominator
clearing must come with the appropriate saturation.
Corresponding non-generic sub-cases must be handled
independently with other polynomial systems.

radicality: comes from the fact that the multiplication by ¢ map
can not involve multiplicities, but care must be taken to ensure
that we did not introduce new multiplicities in our equation.

regular sequence: need to make a random (linear) change of
coordinates and apply a positive characteristic, multi-homogeneous
variant of Bertini's theorem.

degrees: Cantor's paper on division polynomials does not provide
all the degree bounds we need.

30/41

Main result

Thm. There is a probabilistic algorithm that given a hyperelliptic
curve of genus g over a finite field F; computes its local Zeta
function in expected time O,((log q)©(8)).

(before, the best known complexity was with a quadratic exponent)

Rem. We do not claim more than a purely theoretical complexity result.

Don't try to implement it following all the steps of the paper; several
parts deal with things that should almost never occur in practice.

31/41

Plan

Introduction, background
Schoof's algorithm

Tools for polynomial systems
New complexity for large genus

The case of genus 3 with real multiplication

32/41

Equations for the torsion in genus 3

For genus 3, the equation for the torsion becomes /D = 0 <

{u1(X), vi (X)) + (w2(X), va(X)) + (u3(X), v3(X)) = 0,

i — X i — X
where ui(X) = dy X72 L vi(X) =& X72 .
4y, 4y

i i

Here, the indeterminates are (x1,y1), (x2,¥2), (x3,¥3).

We apply the group law once, between the first two divisors and
get
(u12(X), vi2(X)) = —(u3(X), v3(X)).

Now, w12 and vip's coefficients depend on x1, y1, X2, ¥2, (and we
use the symmetries).

Rem. Computing this input system can be done by working in the

appropriate function field and takes no time compared to solving it.
33/41

Two ways of solving the polynomial system

In theory, with resultants:

© The number of variables is low (essentially 3, because the y;
do not count);

© The intermediate degrees do not grow too much compared to
the degree of Iy;

© Complexity ends-up being quasi-quadratic in deg Iy, which is
better than the other approaches.
In practice, with F4:
© The F4 algorithm behaves surprisingly well on these systems;
© Absolutely no hope to prove this;
© Many unexpected degree falls during the computation

Rem. Experiments with F4 done with Magma and tinyGB. For
resultants, time estimates based on FLINT and NTL.

34/41

Results for genus 3 curves (without RM)

Complexity result:

Thm. Point counting for genus 3 hyperelliptic curves over a
finite field F, can be done in time O((log q)*4).

Practical result: Experiments for a curve of genus 3, over Fp,
with a 64-bit prime p, and ¢ = 3.
All things put together, we get a system with

@ b5 variables;
© 5 equations of degrees 7, 53, 54, 55, 26.
The system can be solved (with F4, in Magma) in
© 14 days;
© 140 GB of RAM.

The next prime ¢ =5 is already out of reach !

35/41

Real multiplication (RM)

G.-Kohel-Smith (2011): In genus 2, the complexity drops from
O((log q)) to O((log q)°), if an explicit real endormorphism is
known.

‘Let’s follow this path in genus 3‘

RM curves considered by Tautz, Top, and Verberkmoes (1991):
Co: y?=x"—7x>+143 —Tx+t, (t+#+2)
Explicit RM endomorphism on Jacc, (Kohel, Smith 2006):
m(x,y) = (X>+11xX/2+ x> = 16/9,y),

and we have
4N —2m —1=0,

so that Z[n7] = Z[2 cos(27/7)] C End(Jacg,).

36/41

Explicit RM kernel

Let ¢ = be a split prime in Z[n7], for instance

(13) = (2 — n7 — 20%) (=2 + 207 +177) (3 + m7 —117).
Then the kernel Jace,[13] decomposes as a direct sum of the
kernels of these 3 endomorphisms of degree (2.
The same strategy as before will work, in theory with resultants,

and in practice with F4.

E.g. for £ =13, we have to solve three systems with
@ b5 variables,
© 5 equations of degrees 7, 44, 45, 46, 52.

Each of them is smaller than what we had for ¢ = 3.

37/41

Results for genus 3 with RM

Complexity result:

Thm. Point counting for genus 3 hyperelliptic curves over
a finite field Fq with an explicit real multiplication endomor-
phism can be done in time O((log q)°).

Practical result: Experiments for C;, with t = 42 over [F,, with

p = 2% — 50:

Modular information obtained:
mod ¥ #tvar | degree of each eq. time memory
2 —_ —_ — _
4 (inert?) 6 7,7,14,15,15,10 1 min negl.
3 (inert) 5 7,53,54,55,26 14 days 140 GB
13 = p1pops 5 7,44,45,46,52 3 x 3 days 41 GB
7=1p3 5 7,35, 36,37,36 3.5h 6.6 GB
29 = p1pop3 5 7,92,93,94,100 | >3%x2 weeks | >0.8 TB

38/41

Practical results for genus 3 with RM (con’t)

For ¢ = 29, we failed to find the torsion (note that over a small
finite field, the GB computation finished).

For £ =7, only partial information was obtained but not used.
But we got x¢(T) mod 3 x 4 x 13 = 156.

Final parallel collision search:

We used the low-memory variant (G., Schost, 2004) of the
algorithm by Matsuo, Chao and Tsujii (2002).

The complexity is O(p3/4/m3/?), where m = 156 is the known
modular information.

Here: 190,000 3d pseudo-random walks of average length
32,000,000 led to a useful collision, in about 105 days (done in
parallel in a few hours).

39/41

Conclusion

New complexity bounds:

© Arbitrary genus: O,((log q)°(8)) (previous exponent was
quadratic);

© Genus 3: O((log q)'*) in general
© Genus 3: O((log q)°®) with explicit RM

© See also recent result by Abelard, for arbitray genus with RM.

Take-home message about polynomial systems:
© No tool is perfect in all situations;
© Proving (good) complexity bounds can be really, really hard,;

© Look for multi-homogeneity in your favorite systems.

40/41

Our genus 3 RM curve

The curve Csp of equation
y2=x"—7x5 +14x® — Tx 4 42

over F,, with p = 264 _ 59 has characteristic polynomial
x(T) = T — TP+ 0, TH — 03T3 +p02T2 — p201T+ p3,

986268198,
o2 = 35389772484832465583,
o3 = 10956052862104236818770212244.

Q
-
Il

41/41

	Introduction, background
	Schoof's algorithm
	Tools for polynomial systems
	New complexity for large genus
	The case of genus 3 with real multiplication

