
Point counting on hyperelliptic curves of
genus 3 and higher in large characteristic

Simon Abelard, Pierrick Gaudry, Pierre-Jean Spaenlehauer

Caramba – LORIA, Nancy
CNRS, Université de Lorraine, Inria

ECC 2018 – Osaka

1/41



Plan

Introduction, background

Schoof’s algorithm

Tools for polynomial systems

New complexity for large genus

The case of genus 3 with real multiplication

2/41



Point counting

Let C be a curve of genus g over a finite field Fq.
The number Ni ,C of Fqi -rational points of C is finite.

The Zeta function collects all of them into an analytic object:

Z (C,T ) = exp

∑
i≥1

Ni ,C
T i

i

 .
Weil’s theorem:

Z (C,T ) = PC(T )
(1− T )(1− qT ) ,

where PC(T ) = q2gT 2g + · · · is with integer coefficients.

Our goal: compute PC(T ) (hence, Z (C,T ) and all of the Ni ,C).
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Algorithmic Holy Grail

Size of the input: O(g log q)

Holy Grail of point counting: find an algorithm that compute ZC
in polynomial time in g and log q;
for a class of curves as large as possible;
. . . and maybe in a deterministic way;
. . . and maybe for other algebraic varieties;
. . . and maybe also in practice.
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A very brief history of point counting

1985: Schoof’s algorithm, polynomial-time, deterministic for
elliptic curves;
1990: Pila, polynomial-time for fixed genus, deterministic for
Abelian varieties (and therefore Jacobian of curves),
1999-20xx: Satoh, Kedlaya, Lauder-Wan, polynomial-time,
deterministic in fixed characteristic, with p-adic algorithms.
2014: Harvey, average polynomial-time when dealing with
many C that are reductions of the same curve over Q.
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Recent research topics

extend p-adic techniques to more varieties (Harvey, Tuitman);
extend average polynomial-time to more varieties (Harvey,
Kedlaya, Sutherland, Massierer);
explicit isogenies and modular equations for genus 2
(Couveignes, Ezome, Milio, Martindale);
not so much on `-adic methods
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Our plan for today
Let’s concentrate on hyperelliptic curves in large characteristic.

Known complexities for arbitrary genus:
Pila (1990): O(log q)∆, where ∆(g) is not explicit;
Huang, with Ierardi (1998) and Adleman (2001): (log q)Õ(g2).

First goal: make the exponent linear in g .

Known complexities for small genus:
Elliptic curves: Schoof (1985), and Schoof-Elkies-Atkin
(199x): Õ((log q)4);
Genus 2: G.-Harley (2000) and G.-Schost (2012): Õ((log q)8);
Genus 2 with RM: G.-Kohel-Smith (2011): Õ((log q)5);
Genus 3: ??? Õ((log q)14) mentioned here and there.

Second goal: give the exponent for genus 3 with and without RM.
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Hyperelliptic curves

Def. A curve is hyperelliptic if it admits an equation

y2 = f (x),

with f a monic, squarefree polynomial.

Remarks:
In characteristic 2, need to modify the equation;
We assume deg f is odd (imaginary model); enough for
theoretical complexity (maybe not in practice). Then
deg f = 2g + 1 where g is called the genus;
Have to think about the desingularized, projective model;
There is only one point at infinity after desingularization: P∞;
The Jacobian is an associated Abelian variety of dimension g .
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Divisors
Let DivC be the free group of points of C:

DivC =
{

D =
∑

P∈C(Fq)

nPP | for almost all P, nP = 0
}
.

The degree of D ∈ DivC is deg D =
∑

nP .

The divisor of a non-zero function ϕ ∈ Fq(C) is

div(ϕ) =
∑

valP(ϕ)P,

where valP(ϕ) is the valuation of ϕ at P.
The set of such divisors is the group of principal divisors:

PrinC =
{

div(ϕ) | ϕ ∈ Fq(C)∗
}
.

Thm. A principal divisor has degree 0.
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Divisor class group and Jacobian

Divisor class group:

Pic0
C = {Degree-0 divisors}/{Principal divisors}.

This can be given the geometrical structure of a principally
polarized Abelian variety: the Jacobian of C, and we denote it
JacC .

Rem. A purely geometric definition of JacC can be done via an
embedding in a projective space with theta functions.
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Mumford representation
By Riemann-Roch theorem, each class has a unique representative
of the form

D = P1 + · · ·+ Pr − r P∞,with r ≤ g ,

and no two Pi ’s are symmetric w.r.t the x -axis.

Thm. (Mumford representation) Any divisor class can be
uniquely represented by a pair 〈u(X ), v(X )〉, where

u is monic, of degree at most g ;
deg v < deg u;
u divides v2 − f ;

If D is as above, then u(X ) =
∏

(X − xPi ) and v(xi ) = yi .

Cantor’s algorithm allows to compute efficiently in the Jacobian
when elements are represented like this.
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Weil’s theorem

Z (C,T ) = PC(T )
(1− T )(1− qT ) ,

Weil’s theorem implies:
PC(T ) =

∏2g
i=1(1− uiT ), where |ui | = q1/2;

if PC(T ) = a0 + a1T + · · · a2gT 2g , then we have
a2g−i = qg−iai ;
the coeffs are bounded by

(2g
g
)
qg (could be more precise).

Link with the Frobenius endomorphism:
Let π be the x 7→ xq map extended to a map from C to itself and
then linearly to JacC to itself. It can be proven that

P̃C(π) = 0,
where P̃C is PC with reversed-ordered coefficients.
We write χπ(T ) = P̃C(T ) for this characteristic polynomial of
Frobenius.
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Torsion

Let A be an Abelian variety over Fq (A will be JacC).
The `-torsion subgroup is

A[`] = {P ∈ A(Fq) | ` · P = 0}.

Thm. For a prime ` coprime to q, the group structure of A[`] is

A[`] ∼= (Z/`Z)2g .

The set A[`] \ {0} is an algebraic variety of dimension 0, and we
can consider its ideal.
Def. The ideal corresponding to the non-zero `-torsion points is
denoted by I`.
Rem. I` depends on the set of coordinates chosen to represent
A. This could be projective coordinates, or a local affine patch.
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Frobenius action on A[`]

Matrix representation of Frobenius.
The Frobenius endomorphism π maps elements of A[`] to A[`].
Viewing A[`] as an F`-vector space of dimension 2g , π acts
linearly on this vector space: it can be represented as a matrix,
whose characteristic polynomial is χC(π) mod `.

Thm. The characteristic polynomial of π on A[`] is the
reduction mod ` of the global characteristic polynomial of π.

If I` is an ideal in a coordinate ring Fq[X ], the generic `-torsion
element is represented by the algebra B` = Fq[X ]/I`.
Assuming computing in B` is efficient, we can compute χC(π)
mod `.
Note: “efficient” is not so simple to define, here.
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Combining modular information

Main point counting algorithm: (à la Schoof)

1. While the product of `’s already handled is <
(2g

g
)
qg :

1.1 Pick the next small prime ` coprime to q;
1.2 Compute the `-torsion ideal I`;
1.3 Find an efficient representation of I`;
1.4 Compute χC(π) mod `;

2. Reconstruct χC (π) by CRT.

Rem. The number and the size of the `’s is polynomial in g log q.
But the ideal I` is of degree `2g , which is exponential in g .

Rem. The step 1.3 does not exist in the elliptic case, where we
use the division polynomial ψ` to represent I`.
But 1.3 is the most important step for higher genus.
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Coordinate systems for I`

An efficient representation starts with a coordinate system.

Theta functions:
Need many coordinates, at least 2g ;
But nice projective embedding: less non-genericity to handle.

Mumford coordinates:
Optimal number of coordinates O(g);
But local affine coordinates: many non-generic cases if an
intermediate point is not in this affine patch.
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What do we want?

Coordinates of a generic `-torsion element will be in

B` = Fq[X ]/I`,

where X is the set of 2g Mumford coordinates.

Applying Frobenius = raising to the q-th power in B`.
This means being able to work “modulo the ideal”.
This is essentially the definition of a Gröbner basis.

Rem. We are interested both in proven complexity bounds and
practical efficiency.
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Gröbner bases – F4 / F5 algorithm
What is it?

Algorithm that computes a Gröbner basis of the ideal, for any
monomial order; (Faugère)
Usually done in two steps: GB for grevlex and then change
of ordering for lex;
Heavily relies on linear algebra.

Good points, bad points.
Bad complexity bounds if nothing is known.
Good complexity bounds require hard-to-prove properties of
the input system.
Really compute the GB: need to take care about parasite
components (saturation).
Robust to many situations.
Some public and efficient implementations.
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Resultants (univariate)
What is it ?

Algorithm to compute a combination of two input
polynomials, with one less variable;
Produces an element in the ideal: need to repeat to produce a
generating set;
Polynomial arithmetic;
There exist multivariate resultants, but mostly of theoretical
interest.

Good points, bad points.
Not always easy to guarantee that we have a complete set of
generators;
Really bad complexities when there are many variables;
Complexity bound do not assume too much on the input
system;
Some public and efficient implementations.
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Geometric resolution

What is it ?
Algorithm to put the system in triangular form, close to GB
for lex order (Giusti, Lecerf, Salvy, Cafure, Matera, . . . );
Incremental process based on Newton lifting;
Relies on (univariate) polynomial arithmetic and (Jacobian)
matrix inversion.

Good points, bad points.
Intrinsically probabilistic (Monte Carlo);
Only prototype implementations available;
Requires some nice properties of the input system;
Said properties easier to prove than for GB;
Good complexity bounds.
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XL

What is it ?
Algorithm that compute a solution in a given field of
definition (Courtois, Klimov, Patarin, Shamir, . . . )
Same general idea as F4 (Lazard’s algorithm using Macaulay
matrices);
Heavily relies on linear algebra.

Good points, bad points.
Efficient only for solution with coordinates in a small finite
field;
Complexity bounds require hard-to-prove properties of the
input system;
Some public and efficient implementations (for basic XL);
Sometimes heuristically more efficient than F4.
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Summary of the situation for I`

The following is specific to our case.
Multi-homogeneity is an important property of our systems (see
below).

Applicable Applicable Can use
in theory in practice multi-homog.

F4 ?
Resultants
Geom. resol. ?

XL ?

Rem. For your own problem, you’ll have to write your own table.
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Equations for the torsion (1)
Take a generic divisor:

D =
g∑

i=1
(Pi − P∞),

where Pi = (xi , yi ) and write `D = 0.

For any i , `(Pi − P∞) is equivalent to a reduced divisor in
Mumford representation:

`(Pi − P∞) = 〈ui (X ), vi (X )〉,

where ui and vi are polynomials with coeffs that depends on xi
and yi . They are exactly Cantor’s division polynomials:

ui (X ) = δ`

(
xi − X
4y2

i

)
, vi (X ) = ε`

(
xi − X
4y2

i

)
.
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Equations for the torsion (2)

`D = 0⇐⇒ 〈u1(X ), v1(X )〉+ · · ·+ 〈ug (X ), v1(X )〉 = 0.
Applying g − 1 times the group law: difficult to control the
degrees.
Cantor sketched the following approach:
Consider the function

ϕ(X ,Y ) = P(X ) + YQ(X )
and divϕ = 〈u1(X ), v1(X )〉+ · · ·+ 〈ug (X ), v1(X )〉.

Degrees of P and Q must be ≈ g2/2 (parity of g − ` plays a role).

Set g2 indeterminates for the coefficients of P and Q. We have a
system of equations

P(X ) + ε`

(
xi − X
4y2

i

)
Q(X ) ≡ 0 mod δ`

(
xi − X
4y2

i

)
.
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Multi-homogeneity
This strategy looks bogus, because we have increased the number
of variables from O(g) to O(g2), and the degrees O(`2) of the
equations did not decrease to compensate for it.

Def. A multi-homogeneous polynomial system is a set of
equations f1(X ,Y ) = 0, . . . , fk(X ,Y ) = 0, in two blocks of
variables, where for each equation, the degree in X is ≤ dX and
the degree in Y is ≤ dY .

Key quantity for complexity analysis:

dnx
x dny

y ,

where nx and ny are the number of variables in each block.

We have added g2 variables, but they occur in degree 1, so
this won’t hurt the multi-homogeneous complexity.
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Geometric resolution and multi-homogeneity

With the geometric resolution algorithms in the end, the
complexity of solving the system should be polynomial in

dnx
x dny

y = Og (`2g ).

But for that, we need the input system to be
0-dimensional (need to clean-up any higher dimensional
parasite component);
radical (no multiple roots);
a regular sequence (each equation cuts cleanly the previous
ones).

Rem. The first system you write to describe an algebraic situation is
never like this.

29/41



Technicalities to get a proven complexity

0-dimensional: careful when writing equations; any denominator
clearing must come with the appropriate saturation.
Corresponding non-generic sub-cases must be handled
independently with other polynomial systems.

radicality: comes from the fact that the multiplication by ` map
can not involve multiplicities, but care must be taken to ensure
that we did not introduce new multiplicities in our equation.

regular sequence: need to make a random (linear) change of
coordinates and apply a positive characteristic, multi-homogeneous
variant of Bertini’s theorem.

degrees: Cantor’s paper on division polynomials does not provide
all the degree bounds we need.
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Main result

Thm. There is a probabilistic algorithm that given a hyperelliptic
curve of genus g over a finite field Fq computes its local Zeta
function in expected time Og ((log q)O(g)).

(before, the best known complexity was with a quadratic exponent)

Rem. We do not claim more than a purely theoretical complexity result.
Don’t try to implement it following all the steps of the paper; several
parts deal with things that should almost never occur in practice.
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Equations for the torsion in genus 3
For genus 3, the equation for the torsion becomes `D = 0⇔

〈u1(X ), v1(X )〉+ 〈u2(X ), v2(X )〉+ 〈u3(X ), v3(X )〉 = 0,

where ui (X ) = δ`

(
xi − X
4y2

i

)
, vi (X ) = ε`

(
xi − X
4y2

i

)
.

Here, the indeterminates are (x1, y1), (x2, y2), (x3, y3).

We apply the group law once, between the first two divisors and
get

〈u12(X ), v12(X )〉 = −〈u3(X ), v3(X )〉.

Now, u12 and v12’s coefficients depend on x1, y1, x2, y2, (and we
use the symmetries).

Rem. Computing this input system can be done by working in the
appropriate function field and takes no time compared to solving it.
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Two ways of solving the polynomial system
In theory, with resultants:

The number of variables is low (essentially 3, because the yi
do not count);
The intermediate degrees do not grow too much compared to
the degree of I`;
Complexity ends-up being quasi-quadratic in deg I`, which is
better than the other approaches.

In practice, with F4:
The F4 algorithm behaves surprisingly well on these systems;
Absolutely no hope to prove this;
Many unexpected degree falls during the computation

Rem. Experiments with F4 done with Magma and tinyGB. For
resultants, time estimates based on FLINT and NTL.
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Results for genus 3 curves (without RM)

Complexity result:
Thm. Point counting for genus 3 hyperelliptic curves over a
finite field Fq can be done in time Õ((log q)14).

Practical result: Experiments for a curve of genus 3, over Fp,
with a 64-bit prime p, and ` = 3.
All things put together, we get a system with

5 variables;
5 equations of degrees 7, 53, 54, 55, 26.

The system can be solved (with F4, in Magma) in
14 days;
140 GB of RAM.

The next prime ` = 5 is already out of reach !
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Real multiplication (RM)
G.-Kohel-Smith (2011): In genus 2, the complexity drops from
Õ((log q)8) to Õ((log q)5), if an explicit real endormorphism is
known.

Let’s follow this path in genus 3

RM curves considered by Tautz, Top, and Verberkmoes (1991):

Ct : y2 = x7 − 7x5 + 14x3 − 7x + t, (t 6= ±2)

Explicit RM endomorphism on JacCt (Kohel, Smith 2006):

η7(x , y) = 〈X 2 + 11 xX/2 + x2 − 16/9, y〉,

and we have
η3

7 + η2
7 − 2η7 − 1 = 0,

so that Z[η7] ∼= Z[2 cos(2π/7)] ⊂ End(JacCt ).
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Explicit RM kernel

Let ` = be a split prime in Z[η7], for instance

(13) = (2− η7 − 2η2
7) (−2 + 2η7 + η2

7) (3 + η7 − η2
7).

Then the kernel JacCt [13] decomposes as a direct sum of the
kernels of these 3 endomorphisms of degree `2.

The same strategy as before will work, in theory with resultants,
and in practice with F4.

E.g. for ` = 13, we have to solve three systems with
5 variables,
5 equations of degrees 7, 44, 45, 46, 52.

Each of them is smaller than what we had for ` = 3.
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Results for genus 3 with RM
Complexity result:

Thm. Point counting for genus 3 hyperelliptic curves over
a finite field Fq with an explicit real multiplication endomor-
phism can be done in time Õ((log q)6).

Practical result: Experiments for Ct , with t = 42 over Fp, with
p = 264 − 59:

Modular information obtained:
mod `k #var degree of each eq. time memory
2 — — — —
4 (inert2) 6 7, 7, 14, 15, 15, 10 1 min negl.
3 (inert) 5 7, 53, 54, 55, 26 14 days 140 GB
13 = p1p2p3 5 7, 44, 45, 46, 52 3× 3 days 41 GB
7 = p3

1 5 7, 35, 36, 37, 36 3.5h 6.6 GB
29 = p1p2p3 5 7, 92, 93, 94, 100 >3×2 weeks >0.8 TB
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Practical results for genus 3 with RM (con’t)

For ` = 29, we failed to find the torsion (note that over a small
finite field, the GB computation finished).
For ` = 7, only partial information was obtained but not used.
But we got χC(T ) mod 3× 4× 13 = 156.

Final parallel collision search:
We used the low-memory variant (G., Schost, 2004) of the
algorithm by Matsuo, Chao and Tsujii (2002).
The complexity is O(p3/4/m3/2), where m = 156 is the known
modular information.

Here: 190,000 3d pseudo-random walks of average length
32,000,000 led to a useful collision, in about 105 days (done in
parallel in a few hours).
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Conclusion

New complexity bounds:
Arbitrary genus: Og ((log q)O(g)) (previous exponent was
quadratic);
Genus 3: Õ((log q)14) in general
Genus 3: Õ((log q)6) with explicit RM
See also recent result by Abelard, for arbitray genus with RM.

Take-home message about polynomial systems:
No tool is perfect in all situations;
Proving (good) complexity bounds can be really, really hard;
Look for multi-homogeneity in your favorite systems.
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Our genus 3 RM curve

The curve C42 of equation

y2 = x7 − 7x5 + 14x3 − 7x + 42

over Fp with p = 264 − 59 has characteristic polynomial

χ(T ) = T 6 − σ1T 5 + σ2T 4 − σ3T 3 + pσ2T 2 − p2σ1T + p3,

with
σ1 = 986268198,
σ2 = 35389772484832465583,
σ3 = 10956052862104236818770212244.
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